Cerebellar Culture Models of Dendritic Spine Proliferation After Transplantation of Glia
نویسنده
چکیده
Studies of Purkinje cell dendritic spine proliferation after transplantation of cytosine arabinoside (Ara C) treated organotypic cerebellar cultures with glia and granule cells, either separately and in combination, were reviewed. Exposure of cerebellar explants to Ara C for the first 5 days in vitro results in the destruction of granule cells, the only excitatory cortical neurons, and oligodendroglia, and functionally compromises surviving astrocytes so that they do not appose neuronal membranes. In the absence of granule cells, there is a sprouting of Purkinje cell recurrent axon collaterals, the terminals of which project to and form heterotypical synapses with Purkinje cell dendritic spines, which are usually occupied by terminals of granule cell axons (parallel fibers). After this reorganization has been achieved, the explants can be transplanted with the missing elements to induce a second round of reorganization, with approximate restoration of the usual interneuronal relationships. Addition of both granule cells and glia resulted in a proliferation of clusters of Purkinje cell dendritic spines, which formed synapses with axon terminals of transplanted granule cells, and as synapse formation progressed, the spine clusters became reduced. Transplantation of Ara C-treated cultures with glia alone resulted in a proliferation of clusters of Purkinje cell dendritic spines, but in the absence of granule cells the spines remained unattached, and the clusters persisted throughout the period of observation. Purkinje cell dendritic spine proliferation was induced by exposure of Ara C- treated cultures to astrocyte-conditioned medium. When Ara C-treated cerebellar cultures were transplanted with granule cells in the absence of functional glia, parallel fiber- Purkinje cell dendritic spine synapses formed, but no clusters of Purkinje cell dendritic spines were observed. These findings suggest that Purkinje cell dendritic spine proliferation is induced by an astrocyte-secreted factor, resulting in an expansion of postsynaptic sites available for synaptogenesis.
منابع مشابه
Comparison of Functional Competence of Umbilical Cord and Adult Peripheral Blood Dendritic Cells in Allogenic Mixed Leukocyte Reaction
Background: Dendritic cells (DCs) are the most potent stimulators of primary T cell responses and play a key role in immune reactions after stem cell transplantation. Very little is known about the cord blood (CB) dendritic cells and their potential involvement in the low incidence and lower severity of acute graft-versus-host disease after CB transplantation. Objectives: The aim of this stud...
متن کاملContribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملEarly Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures
Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there ...
متن کاملDoes Nitric Oxide Generated by Dendritic Cells Contribute to the Low Incidence of GVHD after Cord Blood Transplantation?
متن کامل
Eph Receptors Are Involved in the Activity-Dependent Synaptic Wiring in the Mouse Cerebellar Cortex
Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Neural Transplantation & Plasticity
دوره 6 شماره
صفحات -
تاریخ انتشار 1997